Hardy-Littlewood and Chowla Type Conjectures in the Presence of a Siegel Zero - Terence Tao Published 2023-02-27 Download video MP4 360p Recommendations 58:38 The Unipotent Mixing Conjecture - Valentin Blomer 1:03:15 Terence Tao (UCLA): Pseudorandomness of the Liouville function 46:44 Proofs in mathematics 57:06 Some remarks on Landau--Siegel zeros - Alexandru Zaharescu 1:02:51 Fundamental Physics in the Twenty-first Century | Nima Arkani-Hamed 1:02:10 Terence Tao: Vaporizing and freezing the Riemann zeta function 58:30 What if Current Foundations of Mathematics are Inconsistent? | Vladimir Voevodsky 08:59 Gaps between Primes - Numberphile 1:21:41 Surprises from rubbing the wrong way - A public lecture by Tadashi Tokieda 16:27 The Search for Siegel Zeros - Numberphile 59:02 Terence Tao "Correlations of Multiplicative Functions" 50:03 Day 2 - The notorious Collatz conjecture - Terence Tao 1:05:04 Terence Tao: Nilsequences and the Primes, UCLA 01:59 Terry Tao and 'Cheating Strategically' (extra footage) - Numberphile 1:31:31 Complexity and Gravity II - Leonard Susskind 47:51 Terence Tao: Structure and Randomness in the Prime Numbers, UCLA 1:27:19 Aspects of Eternal Inflation, part 1 - Leonard Susskind 1:40:32 Where in the World are SUSY & WIMPS? - Nima Arkani-Hamed 56:50 Terence Tao - The Erdős Discrepancy Problem (October 18, 2017) Similar videos 55:02 Terence Tao: Approximants for classical arithmetic functions 44:59 Kevin Ford: Prime gaps, probabilistic models, the interval sieve, Hardy-Littlewood [...] (NTWS 031) 05:30 Yitang Zhang and Siegel zero 00:58 elementary proof of Hardy-Littlewood prime tuples conjecture 00:09 Second Hardy-Littlewood Conjecture 18:39 Hardy Littlewood Maximal Function 25:00 CANT 2022 Gautami Bhowmik, Siegel zeros under Goldbach conjectures 55:37 Infinite Partial Sumsets in the Primes - Terence Tao 03:06 Terence Tao on Polymath approach applicability. 54:32 Non-measurability of the inverse theorem for the Gowers norms - Terence Tao 00:31 Introducing Professor Terence Tao 1:17:27 Linear equations in primes, Terence Tao, 3/4. 35:17 Littlewood's Conjecture A Geometric Reconceptualization 01:01 Terence Tao, Greatest Mathematician 1:12:09 Terry Tao 15 April 2020 06:57 Proof of Hardy-Littlewood Theorem || Harmonic Analysis 58:32 Hardy-Littlewood maximal operator and weak type Inequality || Averaging Theorem. More results