MIT 6.S191 (2023): Recurrent Neural Networks, Transformers, and Attention Published 2023-03-17 Download video MP4 360p Recommendations 55:15 MIT 6.S191 (2023): Convolutional Neural Networks 1:37:37 The Turing Lectures: The future of generative AI 1:02:50 MIT 6.S191: Recurrent Neural Networks, Transformers, and Attention 36:16 The math behind Attention: Keys, Queries, and Values matrices 1:03:43 How to Speak 17:38 The moment we stopped understanding AI [AlexNet] 31:18 The Story of Shor's Algorithm, Straight From the Source | Peter Shor 58:12 MIT Introduction to Deep Learning | 6.S191 23:01 But what is a convolution? 45:22 CEO of Microsoft AI speaks about the future of artificial intelligence at Aspen Ideas Festival 10:45 The Man Who Solved the $1 Million Math Problem...Then Disappeared 1:48:12 Geoffrey Hinton in conversation with Fei-Fei Li — Responsible AI development 54:24 26. Chernobyl — How It Happened 14:48 The Big Misconception About Electricity 1:19:56 1. Introduction to the Human Brain 40:08 The Most Important Algorithm in Machine Learning 36:55 Andrew Ng: Opportunities in AI - 2023 1:12:07 Lecture 2: Airplane Aerodynamics 2:06:38 This is why Deep Learning is really weird. Similar videos 58:18 MIT 6.S191 (2022): Recurrent Neural Networks and Transformers 49:01 MIT Introduction to Deep Learning (2022) | 6.S191 59:52 MIT 6.S191 (2023): Deep Generative Modeling 1:02:42 MIT 6.S191 (2023): The Future of Robot Learning 1:00:31 MIT 6.S191 (2021): Recurrent Neural Networks 1:08:47 MIT 6.S191 (2023): Deep Learning New Frontiers 44:43 MIT 6.S191: AI for Science 57:33 MIT 6.S191 (2023): Reinforcement Learning 36:15 Transformer Neural Networks, ChatGPT's foundation, Clearly Explained!!! 05:34 Attention mechanism: Overview 53:10 MIT 6.S191 (2023): The Modern Era of Statistics 1:11:41 Stanford CS25: V2 I Introduction to Transformers w/ Andrej Karpathy 5:55:34 Sequence Models Complete Course 58:04 Attention is all you need (Transformer) - Model explanation (including math), Inference and Training 16:44 What are Transformer Neural Networks? More results